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Flow of two-phase media along curvilinear surfaces and in curvilinear channels is 
studied by simplifying the equations of motion through introduction of a special 
orthogonal curvilinear coordinate system. 

In dealing with various technological processes and pneumohydrotransport it often becomes 
necessary to study two-phase flows in the working volumes of the apparatus and in curvilinear 
channels. The model of multivelocity mutually penetrating continua can be used to describe 
the hydrodynamics of two-phase media. For example, []_-6] considered the conservation equations 
for the mechanics of two-phase media, while [I, 2, 5-8] dealt with the problem of forming a 
closed system with those equations. In particular, according to [i], when momentum transfer 
by pulsations can be neglected, the conservation equations can be written in the form 

o~___~ + v (p~g~) = o, 
ot 

p~ d~V~ _ _ % F P  + AhF~ - -  fl~ + F~, ( 1 ' )  
dt 

o~,___:= + v O.,~P~) = o, 
at 

ds 
P" d [  - o~.,_Vp + f~ + F2, 

System (i') is written with neglect of unaveraged collisions of inclusions and their 
shear deformations with respect to the carrier phase, the subscript 1 refers to the carrier 
phase, the subscript 2 to the dispersed phase, and ~?, D~ are viscosity coefficients. 

However, solution of the mechanics equations of multiphase media is beset with great dif- 
ficulties, and can be carried out only for the simplest flows, for example, one-dimensional 
ones. In some cases, by selection of a special curviiinear coordinate system x i (i = i, 2, 3) 
two-phase flows can be reduced to "close to" one-dimensional, for example, for film flows on 
curvilinear surfaces, flows in curvilinear axisymmetric and planar channels (tubes), etc. The 
coordinate system must be chosen such that the channel wall (flow surface) coincides with the 
coordinate surface x = = const, with the coordinate lines (surfaces) x i forming a family of 
normals to this surface. For the coordinate x 3 we choose the rotation angle for axisymmetric 
channels (surfaces) or the perpendicular to the channel plane for the planar case. Then the 
flow lines will be almost congruent to the coordinate lines x=~ and if we then introduce the 
small parameter ~ = l=/ll, the conditions VxI>> Vxa (flow close to one-dimensional) and ~/gx=>> 
~/~x I are satisfied, where l~ and 12 are characteristic dimensions of the flow region. In the 
future we shall assume that the effective viscosity of the carrier phase is sufficiently high 
and that the channel wall is slightly convex. Then after evaluating terms for the classes of 
flow enumerated above, system (i') for isothermal steady-state flows at low Reynolds numbers 
Re<< 1 and Vix 3 = 0 takes on the form 

% Op 1 8 H1Hat,~ (%) 
Hi Ox* T-'IH1H~Ha Ox2 H~ Ox z \ H, ] 

Hi 0 ( V I . ,  t 1 OH1 fl2.,q--F:x*=O, (l) 
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__.% Op [l_~x-~ -~, F!. , , ,  = 0, ( 2 )  
H~. Ox ~ 

o_2= 2 5  

(%H2H3V,. 0 + ~ (%H~HaV~x.-) = (3) O, 

__ c% Op +[~2x, iF2~___O, (4) 
H~ Ox ~ 

% Op + [12,~+ F2~:, = O, (5) 
H~ Ox ~ 

_ _  0 (%H~H~V2~,) ----- O, (6) O (%//fl~V~.,)  + O--~- 
Ox ~ 

~ + c % =  1. (7) 

In these equations the additional pressure force appearing because of fine scale pertur- 
bations is assumed equal to zero, since it is suppressed by the viscosity of the liquid phase. 
Then the interphase interaction force f:2 in the first approximation for slow motions can be 
represented in the form ~12 = f(~=, ~i, ~2, d)(~1 --~2), where f(a2) = f(a2, ~i, ~=, d) is 
the interphase interaction force coefficient. To determine the functional form of the effec- 
tive viscosity ~(~=) and f(~2) = f(~2, ~i, ~2, d), one can use the results of [i, 2, 5-8]. To 
solve system (1)-(7) we must first find the relation between the Cartesian coordinates x, y, 

, X 3 z and the curvilinear coordinates x I x =, , which is determined by the concrete geometry of 
the flow region, on the basis of which the Lam@ coefficients H i are defined. For example, in 
[9] a system of the form of Eqs. (1)-(7) was used to describe flow of two-phase mixtures in 
rotary mixers. 

We will consider a general method for solution of system (1)-(7) for ~j = const (j = I, 
2). 

i. From Eqs. (2), (5) we find the pressure 

p =~H~(&~ + F2.,)dx 2 + c~(xO 

2. From Eqs. (i), (4), using Eq. (8), we obtain 

(8) 

V ~ ,  = N1 ,~ [[c~(x~, xD I-I~tLN#x~ + c~ (x0] dx ~ + ca (x~) , 
t~ , ga~* (%) (9) 

where c1(x  ~, x 2) - el(x1) 1 O H1 -4:H1 Ox I (yH2(Flx~+F2x,)dx2)--(Fj . ,+F2xO, and c=(x  1) and c3(x  I) a r e  

de t e rmined  from the  c o r r e s p o n d i n g  boundary  c o n d i t i o n s .  

3. The i n c l u s i o n  v e l o c i t y  V2x~ i s  d e t e r m i n e d  from Eq. (4) w i t h  c o n s i d e r a t i o n  of  Eqs. (8 ) ,  
(9). 

4. Then, Eqs. (3), (2), (5) are used to find the unknowns Vlx2 and V2x2 , while in the 

general case Eq. (6) can be used to determine a=. 

5. To find the unknown c' ~ (x I) the condition of constancy of mass flow rates 

2 x~ x~ 

,[ i" ex dx'= ql + q... (io) 
i=l ,2. ;,a. 

1 1 

may be used. 

The simplified system of equations (1)-(7) and this solution technique have been used to 
calculate the motion of two-phase flows in a conical tube and single-cavity hyperboloid of 
revolution, and to describe the hydrodynamics of centrifugal separators used to separate sus- 
pensions and rotary mixers used for preparation of composition materials containing a solid 
phase [9]. 
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When the above solution technique is applied to the case of a two-phase system in the 
cavity of a single-cavity hyperboloid of revolution, the orthogonal curvilinear coordinate 
system chosen is that of an oblate ellipsoid of revolution x ~, x ~, x ~, related to the cylin- 
drical coordinate system z, r, ~ by the expressions 

z z = - r o x ~ x  z, r 2 - ~ r g ( l @ x  l ) ( l q - x 2 ) ,  q) - - -x  ~ ( 1 1 )  

over the range 0 ~ x ~ ~ ~, --i < x = ~ O, 0 < x s ~ 2~. The Lam4 coefficients then have the form 
[I0, ii] 

H1 -- 2 s i n ~  la(1 + x i )  , H~ : :  2sin(z - -x2(1 + x  z) ' 

H3 = .r~_. If  (1 + x 1) (1 -~. x2), (12) 
sln6~ 

where 2~ is the apex angle, r~ is the radius of the throat of the hyperboloid, and ro is one- 
half the focal length. In the case of a hyperboloid of revolution oriented vertically in a 
gravitational field, the projections of the mass forces Fi on the axes x~ and x= have the form 

p: I/-- Yiz, = - -  - -  xz (1 @ x  1) x 1(1 @X z) 
�9 Xi__ X2 Pig, F i~  = x l _ _  x 2 Pig. 

(13) 

Then the solution of Eqs. (i)-(7) can be represented in the form 

V1 x, = Hlcl (x ~) fo  (xq xZ)/~t (%), 

Vix~ - -  V2.~' ---- (cz~Fi~ - -  ~zzf 2x, + a2cl (xi)/Hi)/f  (as), 

I , /3 (X t) - -  p (Xi0 ~- ~ dxl, 
av 

in 

Op - -  Cl (X i) @ H1 (F~, + F2~,), 
c?x ~ t 

cl (x') = ((ql + q~)/2a + ml  (x 1, x})/cD2 (x 1, x}l, 

(14) 

(15) 

(16) 

(17) 

(18) 

where 

4 x~(1 ' 3x9 

- ) Q r - -  X ~ X 1 
1 arctg - +  ln(1 +V~----Z) - -  ln (x  ~ - x z )  ; 

x K ~  x~ 1 + 3 x '  

2 
*i(x,, x2)= ~i~0~176 ~)g ( .r~-]'(1 +x,)(i +x:); 

2f (~.,) \ s m  ~ ! 

., 2a2 P2 r~ (1 + x D (1 -- V / ~ f }  ~XF 

(zip, 4- a2p ~ 
. _ V x ~ ( l + 3 x D t 3 ( . 1 _ i _ 3 x i )  ( I - -  ( - -  x~)7} ~- 9~ (~.~) 

( ) (  ' + (1 -- ~--~x~ I07 (x')~-[T3x, + 1 2x ~ + 2 + a rdg  l / ) y  

5 

v x~ / 1 + 3x ~ U U  + 

l + x '  J + 4 ( 1 + 3 x  ~) ln(  + 2 
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Fig. i. Longitudinal velocity Vlx: and pres- 

sure along tube axis z = ro xr and comparison 
at a= = 0 with solution of [ii] for various 
flow parameter values: i) ql = 0.63 kg/sec, 
g = 0 m/sec 2, ~2 = 0; 2) ql + qa = 0.63 kg/sec, 
g = 9.81 m/sec =, ~2 = 0.i; 3) ql = 0.315 kg/ 
sec, g = 0 m/sec 2, a2 = 0; 4) qx + q2 = 0.315 
kg/sec, g = 9.81 m/sec 2, u2 = 0.i; lower ab- 
scissa indicates pressure head, p~ = 1260 kg/ 
m s, p~ = 2520 kg/m 3, ~I = 1.4 N.sec/m 2. Points, 
calculation of Eq. (ii) with corresponding pa- 
rameter values: solid lines, single-phase flow; 
dashed lines, flow of carrier phase of two- 
phase liquid with identical flow parameters. 
z, m; Vlxl , m/sec; (i/H1)'3p/3x I, N/m s . 

(3p/3X~)av is the mean (over channel section) pressure head. 

Given specified phase mass flow rates, Eqs. (13)-(18) may be used to calculate all flow 
parameters, while with unknown mass flow rates Eqs. (17)-(18) can be used to determine ql + 
q= for a specified pressure head. 

A comparison of the velocity Vlx ~ and the pressure change along the tube axis at a= = 0 

with the solution of the analogous problem for a single phase Newtonian medium [ii] showed 
good agreement (Fig. i). 

The solution of Eqs. (1)-(7) for a conical tube in a spherical coordinate system r, e, 
has the form 

V ~ , =  r2c~ (r_____~) l n (  1 +cosOo ) 
(o%) . 1-4-cosO . '  

V,,  - -  V.,_,. = (~ ,% (po _ p~) g cos 0 + ~oc; (r)) / f  (%), 

(19) 

(20) 

(21) 

c;  (r) = 
0 0 (q, -4- qz)/2a 4- %cz 2 92 (92 -- P~) g ra sinZ Oo/2f (%) 

(pl+p2)r~(21n(1-~c~176 ' 
2 

(22) 

where eo is the apex angle. 

If we assume that the pressure change is constant along the tube length (c[(r) = 0) and 
V = u~ + u=~= = 0, then from Eqs. (20), (21) we obtain the spherical particle precipitation 
rate in a gravitational field presented in [5]: 
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5 ) 2 (po _ 9~) clz - (23) 

5 " 
2d2( 1 ---~%) 

At ~2 = 0 Eqs. (19)-(22) agree well with known solutions for the flow of a single-phase 
liquid in a conical tube [12], with the relative error for the longitudinal velocity not ex- 
ceeding 5% at 80 ~ 30 ~ �9 The solution obtained for the conical tube as eo ~ 0 describes flows 
of two-phase media in cylindrical tubes. 

The simplification of Eqs. (1)-(7) and this solution technique can also be used for study 
of the flow of one- and two-p>'~e media in other curvilinear channels and tubes. For example, 
Eqs. (i)-(I0) describe the flow of two-phase mixtures in planar curvilinear channels at H~ = 
H~(x I, x2), H2 = H2(x I, x=), H3 = i, while at HI = i, H~ = H2(x 2, x3), H3 = H3(x 2, x3), they 
describe flow in cylindrical tubes of noncircular cross section if we can introduce the small 
parameter c = l=/13, where 12 and 13 are the characteristic tube dimensions in the directions 
x 2 and x 3. In this case the orthogonal curvilinear coordinates x = and x 3 are related to the 
configuration of the tube section, while x~z and is directed along the tube axis. The ex- 
pression for the longitudinal velocity has the form 

H2 (Op/Oz -- FI., -- F2x,) dx 2 + c2 (x a) dx< V I ~  = - -  H3~ (~) 
X~ x~ 

1 

In conclusion, it should be noted that in solution of the problem we have assumed that 
the inclusion concentration is constant over the entire flow region and that adhesion condi- 
tions are satisfied on the tube walls. But these assumptions are only approximations to the 
real conditions. In reality, the concentration can be considered constant only outside a wall 
layer with thickness on the order of the particle size under concerete flow conditions, while 
the adhesion boundary conditions must be replaced by other ones. The effect of external bound- 
aries on flow of two-phase media has been considered in detail in [2, 8]. 

NOTATION 

~j ~ , Oj,  a j ,  v e l o c i t y ,  mean d e n s i t y ,  and volume c o n c e n t r a t i o n  of  phase j ;  p j ,  t r ue  d e n s i t y  

of phase j ;  ~kZ and ek ;,  s t r e s s  and de fo rmat ion  r a t e  tensors ' ,  f12 ,  i n t e r p h a s e  i n t e r a c t i o n  

f o r c e ;  F j ,  mass f o r c e  a c t i n g  on phase j ;  p, pressure; ,  f (~2)  and ~(~2) ,  i n t e r p h a s e  i n t e r a c t i o n  

and e f f e c t i v e  v i s c o s i t y  c o e f f i c i e n t s  of mix ture ;  x ~, o r thogona l  c u r v i l i n e a r  c o o r d i n a t e s ;  Hi, 
Lame c o e f f i c i e n t s ;  q j ,  mass f low r a t e  of  phase j ;  d, c h a r a c t e r i s t i c  dimension of i n c l u s i o n s ;  

~1 v i s c o s i t y  of  l i q u i d  phase 1; x~ and x}, i n i t i a l  and f i n a l  x i v a l u e s .  
' 1 
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MAGNETOGASDYNAMIC MODEL OF CAPILLARY DISCHARGE 

FROM EVAPORATING WALL 

V. E. Okunev and G. S. Romanov UDC 533.9.07:533.95 

The article describes the mathematical and physical models of heavy-current capil- 
lary discharges. The results of numerical calculation of plasma flow in capillar- 
ies are presented. 

Capillary discharge from an evaporating wall (CDEW) is widely used in standard light 
sources ~V-45 [i] and "Impul's-5" [2] as source of plasma with controlled parameters. This 
makes it possible to investigate the thermodynamic and optical characteristics of the plasma, 
and also processes occurring in plasma jets, etc. The experimental study of CDEW is limited on 
account of its specific features: a relatively cool, optically dense plasma shell adjacent to 
the walls of the capillary prevents us from obtaining direct information on the parameters pre- 
vailing in the hot region of the discharge near the axis. Yet this region may play a decisive 
part in the overall energy balance and mass balance of the evaporated substance, especially 
when radiant transfer is the dominant process of energy supply to the wall [3]. Another equal- 
ly important circumstance stimulating interest in the theoretical investigation of CDEW is the 
strong nonideality of plasma in capillaries that leads to plasma phase transformation [3]. 
Also of interest is the study of plasma with higher parameters than in the gasdynamic regime 
of CDEW, induced and maintained by currents of heavy-current pulse discharge in the gas, the 
intensity being ~i05 A or more [4, 5]. 

Thus, working out a theoretical model of CDEW and preparing on its basis a program of 
calculating the dynamics of the phenomenon makes it possible to reveal processes and parame- 
ters that are inaccessible to direct experimental observations. This, in turn, makes it pos- 
sible to influence in a controlled manner the quantitative characteristics of CDEW. 

Below we describe the physical and mathematical models of heavy-current capillary dis- 
charges when the magnetic eigenfield of the discharge current is of high intensity, and the 
magnetic pressure is comparable with the gas-kinetic pressure. We also present the results 
of numerical calculations of radiative and gasdynamic processes occurring in capillary dis- 
charges from the initial nonsteady-state phase up to the establishment of steady-state plasma 
motion. 

To describe plasma flow in the channel of a capillary discharge with heavy discharge cur- 
rents, when magnetic pressure may not be neglected in comparison with the gas-kinetic pressure, 
we use a system of magnetic and gasdynamic equations supplemented by Maxwell's equations of 
the electromagnetic field [6]. To construct the model of the flow, we make some estimates. 
The test of freezing of the magnetic field in the plasma is the magnetic Reynolds number Re H. 
The characteristic parameters for the magnetic and gasdynamic (MGD) flow regime of plasma in 
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